
PosDB in 2023: State of Affairs

George Chernishev
chernishev@gmail.com

Saint-Petersburg State University, Russia

ACM SIGMOD Moscow Chapter Talk
April 6th, 2023

1/74



Talk outline
• Starting point: PosDB in 20181 [CGG+17, CGG+18]
• Three basic query processing strategies [CGG+22]

+ first benchmark vs industrial systems

• Hybrid materialization strategy (preprint in the works)
• Research:

• Window function computation [MGC19]
• Intermediate result caching [GKC20]
• Data compression [SKSC21]
• External sort [PGSC22]
• Recursive query processing (preprint in the works)

• Technical Improvements
• Disk sub-system with a proper buffer manager
• Distributed join and distributed aggregation operators with

data repartition
• Catalogue evolution
• Parser and a simple plan generator

1A recap of my previous talk, meeting 202 (November, 29, 2018)
https://synthesis.frccsc.ru/sigmod/seminar/s20181129.html
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Column-Store Basics



Columnar Approach: Contemporary View

Nowadays many industrial systems call themselves “columnar”.

They treat column-orientation as storage level-only:
• processing is usually organized as follows: “read, decompress

data, construct tuples, continue to work as usual”;
• early materialization

• allows to read only requested columns;

• efficient column-oriented compression.
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Columnar Approach: Founders Vision

However, founders proposed not only column-oriented data
storage, but also column-oriented data processing [ABH13]:

• query plans allow operators exchange not only data, but also
positions;

• an option to select tuple reconstruction time: transition from
positions to records

• materialization strategy
• additional benefits:

• operating directly on compressed data
• conserving I/O bandwidth further
• reducing the CPU processing load

−→ novel operators, novel query plans.
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Starting point: PosDB in 2018



PosDB: why?

• Inspired by old-school column-stores such as
C-Store [SAB+05] and MonetDB [IGN+12]

• Position-enabled systems

• Existing (at the time of project start) works not touched:
1 Positions-enabled processing (i.e. late materialization) for

aggregation, subqueries, . . .
2 Distributed processing for such column-stores was not studied

at all

• Why new prototype?
• Project started in 2016, at that time there were no

open-source disk-based column-stores −→ Need a prototype of
a new distributed column-store
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PosDB in 2018 I: basics

PosDB — a disk-based column-store for research purposes:

• Relies on Volcano block-based iterator model [Gra93].

• Columnar: data is stored in columns, focus on analytic queries.

• Disk-based: data >> main memory.

• Distributed: has send & receive operators. Not mediator-based,
but “true” distribution of data and queries.

• Parallel: any operator sub-tree can be executed in a separate
thread.

• Query evaluation focuses on late materialization approach.
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PosDB in 2018 II: core

PosDB — a disk-based column-store for research purposes:

• Position-enabled column-store: operators pass not only data,
but also positions

• Two types of data representation: tuple and positions (join
index)

• Two types of operators: accepting positions or tuples
• e.g. TupleHashJoin & HashJoin

• Reader: auxiliary entity controlled by operator, used to get data

• Materialization: process of turning positions into tuples

• Materialization point — place in a plan, where positions are
turned into tuples
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Query plans, Volcano model, Late materialization

DS(supplier) DS(lineorder) DS(part)

Filter JoinRead(p_partkey) Read(lo_partkey)

JoinRead(s_suppkey) Read(lo_suppkey)

Read(lo_orderdate)Read(d_datekey)

DS(date)

Filter

Aggregate

Sort

To user Operator Reader Operator
internals

Join

remote accesslocal access

... Tuples

Columns

Read(s_region)

Read(p_category)

Query	is	represented	by	a	tree
Each	node	is	an	operator
Operators	share	a	single	iterator	interface

bool	open();	//initialization
Block	*getNext();	//next	data	block
bool	close();	//free	resource
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Join index

Query may contain joins, therefore a
special data block is required:

• Use classic data structure [Val87];

• Position lists, one per table;

• Two tables: a map of positions of T1
into positions of T2;

• N tables: a map of positions of
T1,T2,TN−1 into positions of TN

row1
row2
row3

row1
row2
row3

row1
row2
row3

T1 T2 T3

3
2
1 2

1
3

T1 T2
3
2
3

T3

Join Index
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Acquiring data and positions

1 Initial JoinIndex acquisition happens
in leaves of a tree via DataSource
operator

2 All necessary data is read inside
operators

Operator

Data reading

positions

positions

Data reading

Remote Local

NetworkReader

RemoteReader

XXXReader

Disk

Network Storage subsystem
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Summary

(+)
• Focus on Star Schema Benchmark [SSB09];
• Distribution and parallelism on a plan level:

• Both inter- and intra- query parallelism;
• Both data fragmentation and replication;

• Lots of positional- and value- operators;
(–)

• Concentrated on query executor; no rewriter and query
optimizer, statistics subsystem;

• No compression;
• No vectorized primitives and expression compilation;
• Only late materialization;
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Why Star Schema Benchmark?

Star Schema Benchmark:

• mimics analytic
workloads

• allows to benchmark
engine, not optimizer

• synthetic: allows
benchmarking with SF

• easy to implement:
only SPJ +
Groupby/Aggregate +
OrderBy
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Three basic query processing
strategies + first benchmark vs

industrial systems
[CGG+22]



Existing Approaches to Late Materialization I

• Selections (e.g. C-Store) [AMDM07]:

Query: Shipdate < const1AND Linenum < const2
• Joins (e.g. [THS+09])

Select	R1.B,	R1.C,	
R2.E,	R2.H,	R3.F
From	R1,	R2,	R3
Where	R1.A	=	R2.D	
AND	R2.G	=	R3.K

Join
G=K

Join
A=D

Project

Project

A D

K
G

GBC

F

E H
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Existing Approaches to Late Materialization II

Study
Focus on LM
in selections

Focus on
LM in joins

Type

G. Copeland et al.[CK85, KCJ+87] partial full disk
Fractured Mirrors [RDS02] partial partial disk
FlashJoin [THS+09] none full disk
C-Store [SAB+05, AMDM07] full partial disk
MonetDB family [BK99, IGN+12] full full mem
Hyrise [GKK+11] full none mem

No studies which combine LM in selections and joins!

14/74



Three Strategies

Star Schema Benchmark:

• Early Materialization:
no positions

• Late Materialization:
positions up to joins

• Ultra-Late
Materialization:
positions up sort

DataSource(T1)

Filter(T1)

DataSource(T2)

Filter(T2)

Join

Aggregate

Early Ultra-
lateLatetuples

positions
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Our Proposal: Ultra-Late Materialization Model

Idea: support late materialization in
• selections, and,
• joins

while supporting arbitrary number of joins.

Our thoughts:
• Design a new query evaluation model for disk-based systems.
• Study how will it work, compared to other models (strategies),

to industrial row- and column-stores.
• Novel storage devices may have already alleviated out-of-order

probing problem (at least for some cases)? If no, will external
sort help?
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How Plans are Looking Like (EM)?

Aggregate

to user Operator Reader

Operator
internals

Tuples

Columns

DS(lineorder)

Mat-ze
Read(lo_quantity)

Join

DS(date)

Mat-zeRead(d_year)

Read(lo_orderdate)

Read(lo_extendedprice)

Read(lo_discount)

Read(d_datekey)

Filter

Filter
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How Plans are Looking Like (LM)?

Aggregate

to user Operator Reader

Operator
internals

Tuples

Columns

DS(lineorder)FilterRead(lo_discount)

DS(lineorder)FilterRead(lo_quantity)

PosAND

Join

DS(date)

FilterRead(d_year)

Materialize

Materialize...

Read(d_datekey)
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How Plans are Looking Like (ULM)?

Aggregate

to user
Operator Reader

Operator
internals

...
Tuples

Columns

DS(lineorder)FilterRead(lo_discount)

DS(lineorder)FilterRead(lo_quantity)

PosAND

JoinRead(lo_orderdate) Read(d_datekey)

DS(date)

FilterRead(d_year)
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Novelties of PosDB’21 query plans

To benchmark these strategies we implemented tuple-based join,
filter, cross-product, and aggregation operators.

−→ As the result we can have multiple materialization points inside
query plan, one per each root-leaf path. Novel query plans!
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Experimental Evaluation

Setup:
• AMD Ryzen 9 3900X, GIGABYTE X570 AORUS ELITE, Kingston HyperX

FURY Black HX434C16FB3K2/32 32GB, 512 GB SSD M.2 Patriot Viper
VPN100-512GM28H.

• Ubuntu 20.04 LTS, GCC 9.3.0, PostgreSQL 12.5, MariaDB Column-Store 1.5.2
on MariaDB Community Server 10.5.8.

• Star Schema Benchmark with SF ∈ [1; 100] (up to 60GB)

DBMS details:
• Data compression, JIT-compilation, SIMD, and indexes were not used.
• DBMSes were not tuned, default parameters were used.
• Default data plans were used.
• Hash-based versions of joins were used: the smaller table was kept.
• Intra- and inter- query parallelism was turned off + no distributed capabilities.

Studied Strategies:
• Early Materialization,
• Late Materialization,
• Ultra-Late Materialization.
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Performance on the whole Benchmark
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Performance on individual queries

Per-query breakdown:
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Results and Discussion

Findings:
• ULM is the champion, on the whole benchmark, but there are

queries where it loses.
• LM is consistently ≈ 5% faster than EM.
• PostgreSQL loses about 15% to both EM and LM. This

happens due to PostgreSQL running out of memory to cache
pages in its buffer manager.

• MariaDB Column Store beats PostgreSQL by more 2x.
Next goals:
• Disk-spilling joins, i.e. out-of-order probing problem.
• Hybrid materialization.

Details are in our DOLAP@EDBT/ICDT’22 paper [CGG+22].

24/74



Out of order probing I

2

2Image taken from [HAB09] presentation.
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Out of order Probing II

3

Time expenses:
• Seek time + Rotational latency = about 2.5 ms
• Command processing time = little
• Settle time = little

Read 100 items using random access — 250ms. Sequential: 2.5ms
+ 0.1ms.
−→ need to avoid out of order probing!

3Image taken from http://www.applexsoft.com/glossary/hard-disk.html
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Three Strategies, once more

If we are thinking about real application, it is essential to include all
three strategies into the engine.

• Early Materialization:
no positions — classic
approach, fallback
strategy

• Late Materialization:
positions up to joins —
relatively safe, but no
large gains

• Ultra-Late
Materialization:
positions up sort —
very risky, more
research is required

DataSource(T1)

Filter(T1)

DataSource(T2)

Filter(T2)

Join

Aggregate

Early Ultra-
lateLatetuples

positions
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Is LM in Disk-Based Systems Relevant?

• All previous LM disk-based studies considered HDDs,
except [THS+09].

• Now, SSDs are ubiquitous, not a rarity
• SSDs of 2008 != 2022s, they have been seriously improved
• Good random access gains
• Novel types of storage are appearing
• Hope to address the out-of-order probing problem

• Resurgence of interest to late materialization-enabled systems,
need of supporting provenance in systems for visual
analytics [Wu21, PW18a, PW18b].

• Position-enabled processing will be extremely useful for
implementing functional dependency predicates inside
queries [Che20, BSC20].

−→ Disk-based LM reevaluation is required.
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Hybrid materialization strategy
(preprint will appear soon)



Hybrid materialization strategy I: foundations

Aspects of materialization strategies:

Strat.
Fast
predicates

Re-read in
predicates

Pre-read
before
joins

Re-read in
joins

out of
order
probing

Early No No Yes No No
Late Yes Yes Yes No No
Ultra-late Yes Yes No Yes Yes
Hybrid ? ? ? ? ?
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Hybrid materialization strategy II: data blocks

Block structures in PosDB’23:

ids

(a) Positional

tuples

(b) Tuple

ids tuples

(c) Hybrid

Idea:
• introduce a data block which can store positions and tuples
• extend engine with operators to use it
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Hybrid materialization strategy III: hybrid operator

Hybrid operator consists of:
• fetch
• core
• combine

CoreFilter(T1_a - 2 = T2_b + T2_c)

Read(T1_a) Fetch
T1_a, T2_b, T2_c

Combine

T1_id, T2_b
pass?

T2_bT1_id

T2_b, T2_cT1_id

SELECT T1.id, T2.b FROM T AS T1, T AS T2 WHERE T1.a - 2
= T2.b + T2.c
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Hybrid materialization strategy IV: algebra

Extending algebra of operators:
1 HYDataSource: Nil → HybridBlocks,
2 HYFilter, HYProject, HYMaterialize: HybridBlocks →

HybridBlocks;
3 HYHashJoin, HYNestedLoopJoin: {HybridBlocks1,

HybridBlocks2} → HybridBlocks;
4 HYToTuple: HybridBlocks → TupleBlocks.

No aggregation/sort operators yet, we concentrate on SPJ queries.
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Hybrid materialization strategy V: operator
specializations

Fetch-Combine specializations:

Core

Read(T1_a) Fetch
T1_a

CombinePositions

T1_id
pass?

no
tuples

T1_id

no
tuples

T1_id

(a) For positions

Core

Fetch

CombineTuples

T2_b
pass?

no
ids

T2_b, T2_c

T2_b
no
ids

(b) For tuples

Fetch

CombineHashJoin

pass?

Fetch

tuplesids

tuplesids tuplesids

HashTable
CoreHashJoin

join attribute
values

ids,
values

ids,
values

(c) For HashJoin
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Hybrid materialization strategy VI: data transitions

Transition between materialization strategies

PosOperator

HYJoin

TupleOperator

ids tuples

ids no
tuples

tuplesids

tuplesno
ids

(a) To hybrid

TupleOperator

tuplesids

tuples

(b) From hybrid
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Plans in Hybrid Model vs ULM

Join between two big tables:

DS(T1)

Read(T1_a)

T1_id

pass?

T2_id

Read(T2_a)T2_id

CoreNestedLoopJoin

DS(T2)

Fetch

T1_a

Read(T1_b) Fetch

T2_a

Combine

T1_b T2_id

Read(T2_b)

T1_b, T2_id

T1_id

T1_b, T2_b

HYMaterialize

select  T1_b, T2_b
from    T1, T2
where  T1_a = T2_a

(a) Hybrid materialization

DS(T1)

Read(T1_a)

T1_id T2_id

Read(T2_a)T2_idNestedLoopJoin

DS(T2)

Read(T2_b)Read(T1_b)

T1_id, T2_id

T1_id

T1_b, T2_b

Materialize

(b) Ultra-late materialization
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Evaluation I: query

Modified TPC-H Q9:

This time three large tables.
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Evaluation II: results
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(b) Without out-of-order probing

For more details consult preprint/published version.

37/74



Research papers: intermediate
result caching [GKC20]



Intermediate results caching

Materialize

UnionAll

Subtree1 ReceivePos

SendPos

Subtree2

Node1

Node2

Materialize

UnionAll

Subtree1 ReceivePos

SendPos

FetchCache
(Subtree2)

Node1

Node2

Materialize

UnionAll

Subtree1 FetchCache
(Subtree2)

Node1

Node2

• Before materialization; only positions are stored
• Intermediates are stored in-memory
• Allows compression of stored results to reduce memory

footprint
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Intermediate results caching: the main idea

struct QueryDescription {
set <Partition > partitions;
set <pair <Column , Column >> joins;
set <ConstPredicate > const_predicates;
set <ValueList > specific_values;
Buffer plan;

bool contains(const QueryDescription &other);
double complexity ();
size_t expectedBlocks ();

};

1 Reduce every subplan to a descriptive structure
2 Keep track of N last queries
3 Estimate every result’s benefit as a function of computational

complexity and size
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Intermediate results caching: performance
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Details in our DOLAP@EDBT/ICDT’20 paper [GKC20].
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Research papers: window
function computation [MGC19]



Window functions processing in PosDB

Implemented window functions inside PosDB. Contribution:
• Proposed three possible materialization strategies and memory

consumption models for them

• Segment tree generalization

• Segment tree application for evaluation of RANGE-based
window functions
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Window functions: syntax and concepts

window_funct ion ( column ) OVER (
[ PARTITION BY column [ , . . . ] ]
[ ORDER BY column [ ASC | DESC ] ]
[ { ROWS | RANGE } BETWEEN frame_start AND frame_end ]

) ,

where frame_start may be
• UNBOUNDED PRECEDING
• offset PRECEDING
• CURRENT ROW

and frame_end may be
• CURRENT ROW
• offset FOLLOWING
• UNBOUNDED FOLLOWING

Image is taken from the paper “Efficient Processing of Window Functions
in Analytical SQL Queries” of Viktor Leis et al., VLDB, 2015
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Materialization strategies and WF processing

We propose following strategies:
1 Tuples are materialized during partitioning
2 Only keys are materialized during partitioning, positions are

stored as values in hash table
a All required attributes are materialized at the beginning of

group processing.
b Only attributes required for ordering are materialized at the

beginning of group processing; after ordering we can move
through associated positions and materialize data on demand

For all of these strategies we have devised cost models for memory
consumption
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Experimental evaluation (strategy 1)

SELECT l o_o r d e r p r i o r i t y , SUM( l o_o r d t o t a l p r i c e ) OVER (
PARTITION BY l o _ o r d e r p r i o r i t y ORDER BY l o_o r d t o t a l p r i c e
RANGE BETWEEN offt PRECEDING AND offt FOLLOWING

) AS sum
FROM l i n e o r d e r ORDER BY l o _ o r d e r p r i o r i t y ASC

offt = 10

1 2 3 4 5 6 7
0

0.2

0.4
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·105

Scale Factor

T
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e
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PosDB with Segment Tree
PostgreSQL

@offt DBMS SF=1 SF=3 SF=5 SF=7

10
PosDB 10611 32888 57484 84935
Postgres 11498 37205 73003 116160

100
PosDB 11454 35979 63658 93743
Postgres 11536 38046 65834 111100

1K
PosDB 11543 36390 64042 95245
Postgres 11828 38192 66061 113689

10K
PosDB 12116 38001 67239 100130
Postgres 11909 38460 67449 113798

100K
PosDB 12713 39973 70159 105051
Postgres 11924 38552 N/A N/A

1M
PosDB 13272 41552 72982 107273
Postgres N/A N/A N/A N/A

10M
PosDB 12693 39580 69677 101774
Postgres N/A N/A N/A N/A

Details can be found in the MEDI’19 paper “Implementing Window
Functions in a Column-Store with Late Materialization”
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Research papers: data
compression [SKSC21]



Data compression

Implemented data compression in PosDB, benchmarked several
algorithms.

compression year SIMD type source
PFOR 2006 -

light

link1

SIMDFPFOR128 2014 +
SIMDBP128 2014 +
SIMDFPFOR128Delta 2014 +
SIMDBP128Delta 2014 +
VByte 2010 -
Snappy 2011 -

link2

ZSTD 2015 -
LZ4 2011 -
Brotli 2013 -

heavy

BSC 2009 -
CRUSH 2013 -
Bzip2 1996 -
LZMA 2005 -

1 https://github.com/lemire, 2 https://quixdb.github.io/squash/
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Data Compression: results

For more information see our MEDI’21 paper and its extended
version.
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Research papers: external
sort [PGSC22]



External Sort

Implemented comparison-based external sort in PosDB.
External sort operator types:

• Position-based value sort: accepts positions, sorts values
• Position-based position sort: accepts positions, sorts

positions — a possible solution for out of order probing problem
• Tuple-based: accepts values, sorts values

Tuple-based operator:
• Sorts pointers to tuples
• Stores runs on abstract tapes
• Merges runs using polyphase merge
• Generates runs using Introsort
• Writes generated runs directly to the disk
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External Sort: Results

400K
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PostgreSQL, 231 run, work_mem=150MB
Naive, 84 runs, 150MB
Binary heap, 84 runs, 150MB
Loser tree, 84 runs, 150MB
PostgreSQL, 84 runs, work_mem=413MB

Details are in Megadata@ADBIS’22 paper.

48/74



Research papers: recursive query
processing

(preprint will appear soon)



Recursive Queries

BFS calculation in SQL:

1 WITH RECURSIVE edges_cte ( id , from_v , to_v , depth ) AS
2 (SELECT edges . id , edges . from_v , edges . to_v , 0
3 FROM edges WHERE edges . from_v = s t a r t I d
4 UNION ALL
5 SELECT edges . id , edges . from_v , edges . to_v ,
6 e . depth + 1 FROM edges JOIN edges_cte AS e
7 ON edges . from_v = e . to_v AND e . depth < maxDepth )
8 SELECT edges_cte . id , edges_cte . from_v , edges_cte . to_v
9 FROM edges_cte ;

Equivalent Cypher query used for Neo4j:

1 MATCH ( n : Node { i d : s t a r t I d }) −[ :OUTCOME ∗ 0 . . maxDepth ]
2 −>(next : Node )
3 RETURN n . id , next . i d ;
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Recursive Queries: TRecursive
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Recursive Queries: PRecursive
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Recursive Queries: Experiment 1
BFS with the CTE hashed, first experiment set:

BFS with the edges hashed, first experiment set:
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Recursive Queries: Experiment 2
BFS with the CTE hashed, first experiment set:

BFS with the edges hashed, first experiment set:
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Technical: distributed processing



Distributed operations

General idea

1 Appropriately distribute
data

2 Compute local
intermediates

3 Merge them to obtain
total result

Problems

• Minimize network I/O
• Avoid DAG query model
• Provide flexible and

efficient distributed data
model

1 Distributed join: reshuffle, local join, union
2 Distributed aggregation: decompose, local preaggregate,

combine
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Distributed join: DAG?

Join
Node2

Join
Node3

Join
Node4

Filter
copy0

Union
Node5 To user

Filter
copy1

Filter
copy2

...
Node0 Node1

(a) Duplicate approach

Join
Node2

Join
Node3

Join
Node4

Union
Node5 To user

Filter
Multiplexor

Filter
Multiplexor

Node0 Node1

(b) Multiplexor approach
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Multiplexor: 1 to k

Producer

request data

Multiplexor

StubOperatork

k

request data

StubOperator1

request data

1

(a) Module architecture

1
'start'

k
'rewind'

k
'remove'

In progress

Destructed

Initial state

(b) State diagram
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Hybrid materialization: optimize network I/O

Receive

Send

Join(A,B)

Filter(A)

pos

pos

request

request

Send

data

Network
Reader

pos

pos
data

posrequest

Reader

pos data

Node1

Node2
A

B

(a) Late materialization

Receive

Materialize(A)

Data loader

Filter(A)

pos

pos, data

request

Reader

Join(A, B)
pos, data

request

request

pos
data

Node1

Node2
A

B

request

pos, data

(b) Hybrid materialization
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Distributed aggregation: earlier and now

UnionAll

HGAggregate

ReceivePos ReceivePos

Remote
subtree 1

...

Remote
subtree n

HGCombiner

Projection

ReceiveTuple ReceiveTuple

HGAggregate

Remote
subtree 1

...

HGAggregate

Remote
subtree n
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Decomposable aggregation functions

Definition (from “Efficient Evaluation of Aggregates on Bulk
Types” [SG95])
A scalar aggregation function f : bulk(τ) → N is called
decomposable, if there exist functions

α : bulk(τ) → N ′

β : N ′, N ′ → N ′

γ : N ′ → N ,

with
f (Z ) = γ(β(α(X ), α(Y )))

for all X , Y , and Z with Z = X ∪ Y .
From algorithmic perspective α, β, and γ are phases of processing:

• α — preagreggation on remote nodes
• β — combining of preaggregation results from remote nodes
• γ — projection, final transformation
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Technical: disk sub-system &
buffer manager



Data access

• Reader: global strategy to get data for a position stream
• Access method: local access to data for a position block

Storage System

Disk

Access methods
AccessRange
AccessSorted
AccessJive

RangeReader SortedReader JiveReader

Blocks of data
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Access methods

For a position block access data efficiently :

1 contiguous position range (AccessRange): for loop,
sequential pages

2 sparse sorted list of positions (AccessSorted): similar to for
loop, page number always increasing (one-direction file read)

3 sparse unordered list of positions (AccessJive) – ?

3
11
7
5
9

1
2
3
4
5

3
11
7
5
9

1
4
3
5
2

3
5
7
9
11

1
4
3
5
2

3
5
7
9
11

Aus
Noch
Zu

Sonst
Neun

1
2
3
4
5

3
11
7
5
9

Aus
Neun
Zu

Noch
Sonst

Save
Order

Re-
order

Read
data

Re-
order
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Mixed stream of positions

What if stream of positions is local but heterogeneous?

• Select an optimal access method for each individual block
(dynamically)

• AccessJive worse AccessSorted worse AccessRange

																		{									
			AccessRange			range;
			AccessSorted		sorted;
			AccessJive				jive;
			AccessMethod	*current;
}

class

//	points	to 	range,	sorted	or	jive

MixedReader
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Technical: catalogue evolution



Catalogue

Switched from column-based partitioning to table-based one.
Reasons: hard to maintain, impossible to optimize.
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Technical: parser and a simple
plan generator



Parser and a simple plan generator

We have implemented parser and a simple plan generator. Results:
1 Making custom parser, not reusing PostgreSQL one, allowed

us to see many interesting things:
• You need query hypergraph, not query graph to describe join

order in contemporary queries
• There are many corner cases in PosDB, e.g. materialization

operator without readers?
• You need a fake table for running SELECT 1+1; and many

systems do it this way :)
• In our code base, predicates not bound to any table, require (!)

query rewriter e.g. WHERE 1 > 2
• ...

2 Plan generator that currently covers three basic strategies
(PosDB’21)

3 As the result, we have a demo web site, where you can run
queries and browse query plans: https://pos-db.com/
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Conclusion and future work



Conclusion

We have come a long way from a toy engine, used to teach
students, to a larger research prototype, allowing to perform serious
studies. Furthermore, PosDB is close to be usable in production.
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Future work

• Extending class of supported queries, move towards TPC-H
and TPC-DS support — subqueries, first of all;

• Indexes;

• Deferred evaluation of generated attributes;

• Memory management subsystem;

• Query optimizer;

• More technical stuff: REPL, visualization, ...

• ...
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