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Talk outline POSDB

e Starting point: PosDB in 2018! [CGG*17, CGG*18]
® Three basic query processing strategies [CGGT22]
+ first benchmark vs industrial systems

Hybrid materialization strategy (preprint in the works)
Research:
® Window function computation [MGC19]
Intermediate result caching [GKC20]
Data compression [SKSC21]
External sort [PGSC22]
Recursive query processing (preprint in the works)

Technical Improvements

® Disk sub-system with a proper buffer manager

® Distributed join and distributed aggregation operators with
data repartition

® (Catalogue evolution

® Parser and a simple plan generator

1A recap of my previous talk, meeting 202 (November, 29, 2018)

https://synthesis.frccsc.ru/sigmod/seminar/s20181129.html
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Column-Store Basics



Columnar Approach: Contemporary View POSDB

Nowadays many industrial systems call themselves “columnar”.

They treat column-orientation as storage level-only:

® processing is usually organized as follows: “read, decompress
data, construct tuples, continue to work as usual’;

® carly materialization
® allows to read only requested columns;

e efficient column-oriented compression.
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Columnar Approach: Founders Vision PoSDB

However, founders proposed not only column-oriented data
storage, but also column-oriented data processing [ABH13]:
® query plans allow operators exchange not only data, but also
positions;
® an option to select tuple reconstruction time: transition from
positions to records
® materialization strategy
® additional benefits:

® operating directly on compressed data
® conserving 1/O bandwidth further
® reducing the CPU processing load

—> novel operators, novel query plans.
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Starting point: PosDB in 2018



PosDB: why? POSDB

® |nspired by old-school column-stores such as
C-Store [SABT05] and MonetDB [IGN*12]

® Position-enabled systems

e Existing (at the time of project start) works not touched:
@ Positions-enabled processing (i.e. late materialization) for
aggregation, subqueries, ...
® Distributed processing for such column-stores was not studied
at all

e \Why new prototype?
® Project started in 2016, at that time there were no

open-source disk-based column-stores — Need a prototype of
a new distributed column-store
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PosDB in 2018 |: basics POSDB

PosDB — a disk-based column-store for research purposes:

® Relies on Volcano block-based iterator model [Gra93].

e Columnar: data is stored in columns, focus on analytic queries.

® Disk-based: data >> main memory.

e Distributed: has send & receive operators. Not mediator-based,
but “true” distribution of data and queries.

e Parallel: any operator sub-tree can be executed in a separate
thread.

® Query evaluation focuses on late materialization approach.
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PosDB in 2018 II: core POSDB

PosDB — a disk-based column-store for research purposes:

Position-enabled column-store: operators pass not only data,
but also positions

Two types of data representation: tuple and positions (join
index)

Two types of operators: accepting positions or tuples
® e.g. TupleHashJoin & HashJoin

Reader: auxiliary entity controlled by operator, used to get data
Materialization: process of turning positions into tuples

Materialization point — place in a plan, where positions are
turned into tuples
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Query plans, Volcano model, Late materializatiolPQ5DB

R

¢ Query is represented by a tree To user Roader
e Each node is an operator B

o Operators share a single iterator interface Sort

Operator
internals

_I&

local access remote access

bool open(); //initialization

Block *getNext(); //next data block
bool close(); //free resource ggregate Tuples

Columns
‘ Read(d_datekey) Read(lo_orderdate) ‘

‘ Read(s_suppkey) m-* Read(lo_suppkey) ‘ DS(date)

‘ Read(s_region) ‘ Read(p_partkey) W‘—) Read(lo_partkey) ‘

l DS(supplier) ‘ l DS(lineorder) ‘ ‘ Read(p_category) DS(part)
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Join index

POSDB

Query may contain joins, therefore a
special data block is required:

® Use classic data structure [Val87];
e Position lists, one per table;

® Two tables: a map of positions of Ty
into positions of Ty;

e |V tables: a map of positions of
T1, T2, Ty_1 into positions of Ty

Join Index

1 2 3
2 2
3 3

W =
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Acquiring data and positions PoSDB

@ Initial JoinIndex acquisition happens Tpositions
in leaves of a tree via DataSource Operator
operator .

P Data reading
® All necessary data is read inside ?positions
operators

Data reading

<

| Remote Local |
[ NetworkReader ] [ XXXReader ]

Networki iStorage subsystem
[ RemoteReader ] [ Disk J
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Summary POSDB

® Focus on Star Schema Benchmark [SSB09];
® Distribution and parallelism on a plan level:

® Both inter- and intra- query parallelism;
® Both data fragmentation and replication;

® |ots of positional- and value- operators;

e Concentrated on query executor; no rewriter and query
optimizer, statistics subsystem;

® No compression;
® No vectorized primitives and expression compilation;

® Only late materialization;
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Why Star Schema Benchmark? POSDB

Star Schema Benchmark:

® mimics analytic

workloads
¢ allows to benchmark
p_partkey c_custkey
. . . ) name T c_nation
engine, not optimizer = e o
. pbanit Dy )
® synthetic: allows = fo-orderit
benchmarking with SF - Casom
::ZE;M" lo_supplycost ::yw
® easy to implement: = Sovatmmiyest

only SPJ +
Groupby/Aggregate +
OrderBy
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Three basic query processing
strategies + first benchmark vs
industrial systems

[CGGT22]



Existing Approaches to Late Materialization | POSDB

e Selections (e.g. C-Store) [AMDMO7]:

{(val1, val2)) {(vall, Val2)) {(Val1, Val2)} {(val1, Val2)}
MERGE MERGE
{val2}

Valy —7 {val2)
DS4
) SPC
Predicate
Predicate
Linenum
{(pos, Val1)}
val) valy (va2)
DS2
Predicate
Shipdate Shipdate Linenum

Predicate Predicate

Query: Shipdate < constl AND Linenum < const2
e Joins (e.g. [THST09])

Select R1.B, R1.C,
R2.E,R2.H, R3.F

From R1, R2, R3

Where RI.A =R2.D
AND R2.G =R3.K _.--*"

3
Join
G=K
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Existing Approaches to Late Materialization |l POSDB

Focus on LM  Focus on

Study in selections LM in joins Type
G. Copeland et al.[CK85, KCJ*87] partial full disk
Fractured Mirrors [RDS02] partial partial disk
FlashJoin [THST09] none full disk
C-Store [SABT05, AMDMO7] full partial disk
MonetDB family [BK99, IGN*12]  full full mem
Hyrise [GKKT11] full none mem

No studies which combine LM in selections and joins!
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Three Strategies POSDB

Star Schema Benchmark:

e Early Materialization:
no positions

tuples

il
i

® | ate Materialization:

positions up to joins =R It bttt
Filter(T1) Filter(T2)
e Ultra-Late Ty e

¥ v
I\/Iaterialization: lDataSource(T1)l lDataSource(TZ)l "" "" ""
positions up sort
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2223

Our Proposal: Ultra-Late Materialization Model POSDB

Idea: support late materialization in
® selections, and,
® joins

while supporting arbitrary number of joins.

Our thoughts:
® Design a new query evaluation model for disk-based systems.

e Study how will it work, compared to other models (strategies),
to industrial row- and column-stores.

® Novel storage devices may have already alleviated out-of-order
probing problem (at least for some cases)? If no, will external
sort help?
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How Plans are Looking Like (EM)? POGSDB

SELECT
SUM(lo_extendedpriceslo_discount) AS revenue
EROM
lincorder , date to user Operator | Reader
‘WHERE
lo_orderdate = d_datekey AND
lo_discount BETWEEN 1 AND 3 Aggregate Qperator
d_year = 1993 AND internals
AND lo_quantity < 25;

Tuples

Columns
Read(lo_quantity) v Read(lo_extendedprice)
Mat-ze
Read(lo_orderdate) Read(lo_discount)
DS(lineorder

Read(d_year) Read(d_datekey)
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How Plans are Looking Like (LM)?

POSDB

SELECT

SUM(lo_cxtendedprice«lo_discount) AS revenue

FROM to user Operator | Reader

lineorder , date
WHERE Operator
lo_orderdate = d_datekey AND Aggregate internals

lo_discount BETWEEN 1 AND 3

d_year = 1993 AND
AND lo_quantity < 25;

\;JO.

Tuples

Columns

PosAND
‘ Read(lo_discount) ﬂ DS(lineorder

Vv
‘ Read(lo_quantity) DS(lineorder

' Read(d_datekey)

!
‘ Read(d_year) ‘

DS(date)
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- SELECT

How Plans are Looking Like (ULM)?

POSDB

SUM(lo_cxtendedpriceslo_discount) AS revenue
FROM
lincorder , date

WHERE
lo_orderdate = d_datekey AND

lo_discount BETWEEN 1 AND 3 to user

d_year = 1993 AND
Aggregate

AND lo_quantity < 25;

Reader

Operator
internals

Columns

‘ Read(lo_orderdate)ﬂ Join PRead(d_datekey) ‘

/|
‘ Read(lo_discount)<—{ Filtl,er—ﬁ DS(lineorder) ]
N

‘ Read(lo_quantity) 4—{FilierH—ﬁ DS(lineorder))
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Novelties of PosDB'21 query plans

POSDB

To benchmark these strategies we implemented tuple-based join,
filter, cross-product, and aggregation operators.

‘ ... = Materialize ‘

— As the result we can have multiple materialization points inside
query plan, one per each root-leaf path. Novel query plans!
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Experimental Evaluation POSDB

Setup:
® AMD Ryzen 9 3900X, GIGABYTE X570 AORUS ELITE, Kingston HyperX

FURY Black HX434C16FB3K2/32 32GB, 512 GB SSD M.2 Patriot Viper

VPN100-512GM28H.

Ubuntu 20.04 LTS, GCC 9.3.0, PostgreSQL 12.5, MariaDB Column-Store 1.5.2

on MariaDB Community Server 10.5.8.

® Star Schema Benchmark with SF € [1;100] (up to 60GB)
DBMS details:

Data compression, JIT-compilation, SIMD, and indexes were not used.
DBMSes were not tuned, default parameters were used.

Default data plans were used.

Hash-based versions of joins were used: the smaller table was kept.

Intra- and inter- query parallelism was turned off 4+ no distributed capabilities.

Studied Strategies:

Early Materialization,
Late Materialization,

Ultra-Late Materialization.
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22>

Performance on the whole Benchmark POSDB

R

1400 ~ —+— Ultra Late Materialization (PosDB)
—>¢— Late Materialization (PosDB)
1200 { —@— Early Materialization (PosDB)
—p— PostgreSQL
—— i
1000 - MariaDB Column Store
1%]
2
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o
[
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[ i
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'_
400 A
200 A
0 -

0 20 40 60 80 100
Scale Factor
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POSDB

Performance on individual queries

Time, seconds
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Query

(b) Scale Factor 80

23/74



Results and Discussion POSDB

Findings:
e ULM is the champion, on the whole benchmark, but there are
queries where it loses.
e LM is consistently ~ 5% faster than EM.

® PostgreSQL loses about 15% to both EM and LM. This
happens due to PostgreSQL running out of memory to cache
pages in its buffer manager.

e MariaDB Column Store beats PostgreSQL by more 2x.
Next goals:

® Disk-spilling joins, i.e. out-of-order probing problem.

® Hybrid materialization.
Details are in our DOLAPQEDBT/ICDT'22 paper [CGG122].
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Out of order probing | POSDB

QUERY:

SELECT C.lastName,SUM(F.price)
FROM facts AS F, customers AS C
WHERE F.custID = C.custID
GROUP BY C.lastName

Late materialized join
causes out of order
probing of projected
columns from the

Green inner relation
White
Brown
prodlD  storelD quantity custlD price custlD lastName
Facts Customers

2

2Image taken from [HABO9] presentation.
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Out of order Probing Il POSDB

Time expenses:
e Seek time + Rotational latency = about 2.5 ms
® Command processing time = little
e Settle time = little

Read 100 items using random access — 250ms. Sequential: 2.5ms
+ 0.1ms.
— need to avoid out of order probing!

3 .
Image taken from http://www.applexsoft.com/glossary/hard-disk.html
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Three Strategies, once more POSDB

If we are thinking about real application, it is essential to include all
three strategies into the engine.

e Early Materialization:
no positions — classic
approach, fallback
strategy

tuples | Eay | Late
==

® | ate Materialization:

positions up to joins — pﬁwsEE ""

relatively safe, butno [ wn | BRIl

|arge gains | Filter(T1) ] | Filter(T2) | E "" ""

® Ultra'l—ate lDataSotrce(ﬂ)‘ lDataSotrce(TZ)‘ "" "" ""
Materialization:

positions up sort —
very risky, more
research is required
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Is LM in Disk-Based Systems Relevant? POSDB

e All previous LM disk-based studies considered HDDs,
except [THST09].
® Now, SSDs are ubiquitous, not a rarity
SSDs of 2008 != 2022s, they have been seriously improved
Good random access gains
Novel types of storage are appearing
Hope to address the out-of-order probing problem

® Resurgence of interest to late materialization-enabled systems,
need of supporting provenance in systems for visual
analytics [Wu21, PW18a, PW18b].

® Position-enabled processing will be extremely useful for
implementing functional dependency predicates inside
queries [Che20, BSC20].

— Disk-based LM reevaluation is required.
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Hybrid materialization strategy
(preprint will appear soon)



Hybrid materialization strategy |: foundations

POSDB

Aspects of materialization strategies:

Fast Re-read in Pre-read Re-read in out of
Strat. ) ) before .. order

predicates predicates . . joins .

joins probing

Early No No Yes No No
Late Yes Yes Yes No No
Ultra-late  Yes Yes No Yes Yes
Hybrid ? ? ? ? ?
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Hybrid materialization strategy Il: data blocks

POSDB

Block structures in PosDB'23:

ids
il

(a) Positional

Idea:

® introduce a data block which can store positions and tuples

® extend engine with operators to use it

tuples

=

(b) Tuple

ids tuples

i =

(c) Hybrid
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Hybrid materialization strategy ||

22>

. hybrid operatdfQ5DB

Hybrid operator consists of:

o fetch
® core

® combine

SELECT Tl.id, T2b FROM T AS T1, T AS T2 WHERE Tl.a-2

=T2b + T2.c

T1.id T2_b

=

Read(T1_a)

Combine!

15

pass?.

\

T1_id, T2_b
‘ CoreFilter(T1_a-2=T2_b+T2_c)

T1_a, T2 b, T2 c

T1id T2_b, T2 ¢

P
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Hybrid materialization strategy IV: algebra POGDB

Extending algebra of operators:
@ HYDataSource: Nil — HybridBlocks,

® HYFilter, HYProject, HYMaterialize: HybridBlocks —
HybridBlocks;

©® HYHashJoin, HYNestedLoopJoin: {HybridBlocks1,
HybridBlocks2} — HybridBlocks;
O HYToTuple: HybridBlocks — TupleBlocks.

No aggregation/sort operators yet, we concentrate on SPJ queries.
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Hybrid materialization strategy V: operator

specializations

POSDB

Fetch-Combine specializations:

T id T2
.
1

‘CombinePositions‘ ‘CumbineTuples ‘
T1Epass—?Core 2.0 pass?-Ccvre
Read(T1_a) T1_a
v

T1I_id T2.b,12 0

e
(a) For positions (b) For tuples

ids  tuples
i =
CombineHashJoin
ids,
ids, ~ Ppass? values

values | goreHashdoin

N\ HestTabe

join attribute
values

v v
ids  tuples ids  tuples
i == ’ 1 ==

(c) For HashJoin
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Hybrid materialization strategy VI: data transitio

22>

DB

Transition between materialization strategies

TupleOperator

v

tuples

—
v

ids  tuples
iigl =4
v
HYJoin
A/ \
ids no . tuples
N0 ltuples —
v v
ids tuples
e —
PosOperator TupleOperator

ids  tuples

gaEn B4

(a) To hybrid

(b) From hybrid
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Plans in Hybrid Model vs ULM POSDB

Join between two big tables:

select T1_b, T2_b T1_b{T2 b
from T1,T2
where T1_a=T2_a IHYMalerialize Read(T2_b)

T1_b[T2_id T1_biT2_b

‘ Read(T1_b) < Materialize [ Read(T2_b) ‘

2 i
. pass? L T1_id|T2_id
‘ Read(T1_a) +T1_id| NestedLooploin |T2_id Read(T2_a)
Read(T1_a i i
(T1_: ),KTUd T1.d  T2_id

T2_id» Read(T2
i =
T1_id T2_id
(a) Hybrid materialization (b) Ultra-late materialization

35/74



Evaluation |: query

POSDB

Modified TPC-H Q9:

SELECT
c_name, o_totalprice , o_shippriority , I_orderkey,
1_extendedprice * (1 — I_discount)

FROM
nation, customer, orders, lineitem

WHERE

n_name = ALGERIA AND
n_nationkey = c_nationkey AND
c_custkey = o_custkey AND
o_orderkey = 1_orderkey ;

This time three large tables.
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Evaluation IlI: results

POSDB

1404 —e— hybrid
—— late

—— ultra-late

time, s

(a) With out-of-order probing

time, s

140

120

100

80

60

40

(b) Without out-of-order probing

—e— hybrid
—— late
—— ultra-late

SF

For more details consult preprint/published version.
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Research papers: intermediate

result caching [GKC20)]



Intermediate results caching

POSDB

Node4

UnionAll

Node4

UnionAll

‘ Subtree4 HReceivePos ‘

‘ Subtreeq ‘ ‘ ReceivePos ‘

Node4

UnionAll

FetchCache
(Subtreeyp)

Subtree4

Node,

SendPos

Node,

FetchCache
(Subtreey,)

Node,

e Before materialization; only positions are stored

® Intermediates are stored in-memory
e Allows compression of stored results to reduce memory
footprint
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Intermediate results caching: the main idea POSDB

struct QueryDescription {
set<Partition> partitions;
set<pair<Column, Column>> joins;
set<ConstPredicate> const_predicates;
set<ValuelList> specific_values;
Buffer plan;

bool contains (const QueryDescription &other);
double complexity ();
size_t expectedBlocks ();

};

@ Reduce every subplan to a descriptive structure

® Keep track of N last queries

© Estimate every result’s benefit as a function of computational
complexity and size
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Intermediate results caching: performance POGDE

—e  BENEFIT
- LRU
4,000 |- e~ RANDOM |
- —— BENEFITHIST
Q
=
8 3,000 |
=
o
"
€3
2,000 | .
| | | | | |

!
0 5,000 10,00015,00020,00025,00030,00035,000
Cache size (blocks)

Details in our DOLAPQ@EDBT /ICDT 20 paper [GKC20].
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Research papers: window
function computation [MGC19]



Window functions processing in PosDB POSDB

Implemented window functions inside PosDB. Contribution:

® Proposed three possible materialization strategies and memory
consumption models for them

® Segment tree generalization

e Segment tree application for evaluation of RANGE-based
window functions
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Window functions: syntax and concepts POSDB

window _function(column) OVER (
[ PARTITION BY column [ , ... ] ]
[ ORDER BY column [ ASC | DESC ]| ]
[ { ROWS | RANGE } BETWEEN frame start AND frame end]

).
where frame_start may be
® UNBOUNDED PRECEDING order by
e offset PRECEDING = —

e CURRENT ROW

partition by
and frame_end may be

® CURRENT ROW
e offset FOLLOWING
¢ UNBOUNDED FOLLOWING

Image is taken from the paper “Efficient Processing of Window Functions

in Analytical SQL Queries” of Viktor Leis et al., VLDB, 2015
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Materialization strategies and WF processing POGDB

We propose following strategies:

@ Tuples are materialized during partitioning
@® Only keys are materialized during partitioning, positions are
stored as values in hash table
® All required attributes are materialized at the beginning of
group processing.
® Only attributes required for ordering are materialized at the
beginning of group processing; after ordering we can move
through associated positions and materialize data on demand

For all of these strategies we have devised cost models for memory
consumption
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Experimental evaluation (strategy 1)

POSDB

SELECT lo orderpriority , SUM(lo ordtotalprice) OVER (

PARTITION BY lo orderpriority ORDER BY lo

) AS sum
FROM lineorder ORDER BY lo orderpriority ASC

_ _ordtotalprice
RANGE BETWEEN offt PRECEDING AND offt FOLLOWING

offt =10

-10°

Qofft | DBMS | SF=1 | SF=3 [ SF=5 | SF=7
10] L 1 ! ! T 10 | PosDB | 10611 | 32888 | 57484 | 84935
—+—PosDB with Segment Tree | » Postgres | 11498 | 37205 | 73003 | 116160
—— PostgreSQL g 100 | PosDB [ 11454 [ 35070 [ 63658 | 93743
1r b Postgres | 11536 | 38046 | 65834 | 111100
K| PosDB | 11543 [ 36390 | 64042 | 95245
08f % / g Postgres | 11828 | 38192 | 66061 | 113689
£ el Lok | PosDB | 12116 | 38001 | 67230 | 100130
06l © e | Postgres | 11909 | 38460 | 67449 | 113798
E - PosDB | 12713 | 39973 | 70159 | 105051
[ e 100K | postgres | 11024 | 38552 | N/A | N/A
041 v h M | PosDB | 13272 [ 41552 | 72982 | 107273
- Postgres | N/A | N/A | N/A N/A
0.2r ~— b Jom | PosDB [ 12693 [ 39580 [ 69677 | 101774
- Postgres | N/A | N/A | N/A | N/A
0 Il Il Il Il Il Il
1 2 3 4 5 6 7

Scale Factor

Details can be found in the MEDI'19 paper

“Implementing Window

Functions in a Column-Store with Late Materialization”
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Research papers: data
compression [SKSC21]



Data compression POSDB

Implemented data compression in PosDB, benchmarked several
algorithms.

compression year SIMD | type source
PFOR 2006 | -

SIMDFPFOR128 2014 | +

SIMDBP128 2014 | + link!
SIMDFPFOR128Delta | 2014 | +

SIMDBP128Delta 2014 | + light

VByte 2010 | -

Snappy 2011 | -

ZSTD 2015 | -

LZ4 2011 | -

Brotli 2013 | -

BSC 2009 | - link?
CRUSH 2013 | - heav

Bzip2 1996 | - Y

LZMA 2005 | -

1 https://github.com/lemire, 2 https://quixdb.github.io/squash/
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Data Compression: results POSDB

00 175 Data sccess = Guery plan 2000 I Data access  mm Guery pian
250 B wso
1500
200 1
1250
150 1000
100 0 . é[ 12| 750
z 4 ° 6 1 g b 500
0 . 250
0 0
SEQ ACCESS AVERAGE TOTAL PAR ACCESS AVERAGE TOTAL
(a) System run time break down (b) System run time break down
for “sequential” scenario (Seconds) for “parallel” scenario (Seconds)
250
= Decompression BB Read e}
] 0 No Compression 7  SIMDFPFor128Delta,
1 PFor 8  SIMDBPacking
2 VByte 9  SIMDBPackingDclta
3 Snappy 10 Brotli
4 7ZSTD 11 Brip2
2 5 LZ4 12 CRUSH
6 SIMDFPForl28 13 LZMA

10 AVERAGE TOTAL

(¢) IO thread action breakdown (Seconds)  (d) Legend

For more information see our MEDI'21 paper and its extended

Version. 146/74



Research papers: external

sort [PGSC22]



External Sort POSDB

Implemented comparison-based external sort in PosDB.
External sort operator types:

® Position-based value sort: accepts positions, sorts values

® Position-based position sort: accepts positions, sorts
positions — a possible solution for out of order probing problem

® Tuple-based: accepts values, sorts values
Tuple-based operator:

® Sorts pointers to tuples

® Stores runs on abstract tapes

® Merges runs using polyphase merge

e Generates runs using Introsort

e Writes generated runs directly to the disk
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External Sort: Results

22>

POS$DB

€L

700K
PostgreSQL, 231 run, work_mem=150MB
Naive, 84 runs, 150MB

650K Binary heap, 84 runs, 150MB

vy 600K

550K

Time, m

500K -

450K 1

Loser tree, 84 runs, 150MB
PostgreSQL, 84 runs, work_mem=413MB

Details are in Megadata@ADBIS'22 paper.
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Research papers: recursive query
processing
(preprint will appear soon)



Recursive Queries

POSDB

BFS calculation in SQL:

WITH RECURSIVE edges cte (id, from v, to v,

1

2

3 FROM edges WHERE edges.from v = startld
4 UNION ALL
5

6

7

9 FROM edges cte;

SELECT edges.id, edges.from_ v, edges.to v,

e.depth + 1 FROM edges JOIN edges cte AS e

ON edges.from v = e.to_v AND e.depth < maxDepth
8 SELECT edges cte.id, edges cte.from v, edges cte.to

depth) AS$
(SELECT edges.id, edges.from v, edges.to v, 0

Equivalent Cypher query used for Neo4;:

—>(next: Node)
3 RETURN n.id, next.id;

1 MATCH (n:Node { id:startld })—[:OUTCOME %0..maxDepth]
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Recursive Queries: TRecursive POSGDB

{0 user Operator
‘ Reader internals

\ 4
TRecursive HTRecursiveCTE |v

first iteration?

Yes Tuples
Read(id) Read(id) Materialize| | Columns
Read(from) Read(from)
Read(to) Read(to)

Read(id) <—|Etezl ’ DS(edges)
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Recursive Queries: PRecursive

POSDB

to user Tuples
"""""""""""" Columns
Read(id) 7’Wterialize Operator
Operator Reader i
Read(...) P internals
| PRecursive |<—|PRecursiveCTE|
first iteration?
No
Yes
: ; Join Read(from) for edges
Read(id) Filter

Read(to) for edges_cte

DS(edges)

DS(edges)
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Recursive Queries: Experiment 1 POSDB

R

BFS with the CTE hashed, first experiment set:

n=100000,m=2

= 100000, m =2
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Recursive Queries: Experiment 2

22>

POS$DB

€L

BFS with the CTE hashed, first experiment set:

n=100000,m=2

= 100000, m =2
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Technical: distributed processing



Distributed operations POSDB

General idea
Problems

@ Appropriately distribute

® Minimize network |/0
data

e Avoid DAG query model

® Provide flexible and
efficient distributed data
model

® Compute local
intermediates

© Merge them to obtain
total result

@ Distributed join: reshuffle, local join, union

@® Distributed aggregation: decompose, local preaggregate,
combine
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Distributed join: DAG? POSDB

Nodes | To user Nodes | To user
Union [ > Union [ >
LIS RS
Node, Nodeg Node, Node, | Nodeg | Node,
Join Join Join Join Join Join
A E. A Y TR 7 Y SR I SR Gy
F”;er Fi|tlel’ Filtér e \ .“ Multiplexor Multiplexor
copyp | copyq | copys Filter Filter
Nodeg Node4 Nodeg Node
(a) Duplicate approach (b) Multiplexor approach
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Multiplexor: 1 to k

POSDB

request dﬁa request dﬁa
StubOperator4 | | StubOperatory

i Multiplexor i

request dﬁa
]

(a) Module architecture

A Initial state |

k 1
'rewind' 'start’'

I Y

In progress |
k
'remove'

Destructed

(b) State diagram
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Hybrid materialization: optimize network 1/O

POSDB

Send

Reader

(a) Late materialization

(b) Hybrid materialization
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Distributed aggregation: earlier and now POSDE

HGAggregate

HGCombiner

UnionAll
[ReceiveTupIe] [ReceiveTupIe]
[ReceivePosJ s [ReceivePosJ v v
777777 Yoo _,,,,,L,,,,,‘ HGAggregate] [HGAggregate]
Remote ! Remote A e Yy P— Yy
subtree 1 '}  subtreen ' Remote | | Remote |
' subtree 1 3 ' subtree n 3
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Decomposable aggregation functions POSDB

Definition (from “Efficient Evaluation of Aggregates on Bulk
Types" [SG95])

A scalar aggregation function f : bulk(t) — N is called
decomposable, if there exist functions

a: bulk(t) — N’
BN, N = N
v N = N,

with
f(Z) = v(B(a(X), aY)))
forall X, Y,and Zwith Z=XUY.
From algorithmic perspective o, 3, and y are phases of processing:
® o — preagreggation on remote nodes
® 3 — combining of preaggregation results from remote nodes

® ~ — projection, final transformation
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Technical: disk sub-system &
buffer manager



Data access POSDB

® Reader: global strategy to get data for a position stream

e Access method: local access to data for a position block

RangeReader SortedReader JiveReader

7y
Blocks of data v AccessRange

| Access methods f*A ->| AccessSorted
AccessJive

Storage System

Disk
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Access methods POSDB

For a position block access data efficiently:

@ contiguous position range (AccessRange): for loop,
sequential pages

@® sparse sorted list of positions (AccessSorted): similar to for
loop, page number always increasing (one-direction file read)

© sparse unordered list of positions (AccessJive) — 7

N

alslwiIN !

[
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Mixed stream of positions POSDB

What if stream of positions is local but heterogeneous?

e Select an optimal access method for each individual block
(dynamically)

® AccessJive worse AccessSorted worse AccessRange

class MixedReader {

AccessRange range;
AccessSorted sorted;
AccessJive jive;

AccessMethod *current; // points to range, sorted or jive
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Technical: catalogue evolution



Catalogue

POSDB

Switched from column-based partitioning to table-based one.

Reasons: hard to maintain, impossible to optimize.

name : String
1 1
database | tables
1 1.7 store Partition
Table 1 ! stores 1.* name : String 1 partitions 1. name : String
: artType : PartitionType start_pos : Ulnt
name : String 1 table 9 partTyp: yp 1 store 1 P
size - Ulnt parkey : std:vector ————— < size : Ulnt
¥ =Column=
1 1 1 ] 1
table columns slore columns hosts
1 1.* 1 1= 1.*
Column StoreColumn Host
1+ column 1
name : String order : SortOrder host_name : String
type : Type port : String
Logical Physical
Level Level
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Technical: parser and a simple
plan generator



Parser and a simple plan generator POSDB

We have implemented parser and a simple plan generator. Results:

@ Making custom parser, not reusing PostgreSQL one, allowed
us to see many interesting things:

® You need query hypergraph, not query graph to describe join
order in contemporary queries

® There are many corner cases in PosDB, e.g. materialization
operator without readers?

® You need a fake table for running SELECT 1+1; and many
systems do it this way :)

® In our code base, predicates not bound to any table, require (1)

query rewriter e.g. WHERE 1 > 2

® Plan generator that currently covers three basic strategies
(PosDB'21)

© As the result, we have a demo web site, where you can run
queries and browse query plans: https://pos-db.com/
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Conclusion and future work



Conclusion POSDB

We have come a long way from a toy engine, used to teach
students, to a larger research prototype, allowing to perform serious
studies. Furthermore, PosDB is close to be usable in production.
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Future work POSDB

Extending class of supported queries, move towards TPC-H
and TPC-DS support — subqueries, first of all;

Indexes;

Deferred evaluation of generated attributes;

® Memory management subsystem;

Query optimizer;

More technical stuff: REPL, visualization, ...
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